Элементарные финансовые расчеты

Однако в случае сложных процентов не все так однозначно. Если рассчитывать доходность как сложную номинальную ставку (16), то ее уровень резко снизится. При m = 12 получим

j = 12((10/8,2)1/(12 × 40/365)) – 1 ≈ 195,5 %.

При расчете доходности как силы роста – непрерывные проценты (19) – ее уровень будет более точно соответствовать тому, что был рассчитан с помощью простой процентной ставки,

d = ln(10/8,2)/(40/365) ≈ 203,6 %.

Чтобы не запутаться в обилии методов расчета процентных ставок, не обязательно зазубривать каждую формулу. Достаточно четко представлять, каким образом она получена. Кроме того, следует помнить, что любому значению данной ставки может быть поставлено в соответствие эквивалентное значение какой-либо другой процентной или учетной ставки. В предыдущей главе был приведен подобный пример эквивалентности между простыми процентной и учетной ставками (2.2.5). Эквивалентными

называются ставки, наращение или дисконтирование по которым приводит к одному и тому же финансовому результату. Например, в условиях последнего примера эквивалентными являются простая процентная ставка 200,3 % и сложная процентная ставка 511,6 %, так как начисление любой из них позволяет нарастить первоначальную сумму 8,2 тыс. руб. до 10 тыс. руб. за 40 дней. Приравнивая между собой множители наращения (дисконтирования), можно получить несложные формулы эквивалентности различных ставок. Для удобства эти формулы представлены в табличной форме. В заголовки граф табл. 2.2.2 помещены простые процентная (i) и учетная (d) ставки. В заголовках строк этой таблицы указаны все рассмотренные в данном пособии ставки. На пересечении граф и столбцов приводятся формулы эквивалентности соответствующих ставок. В таблицу не включены уравнения эквивалентности простых процентных и сложных учетных ставок вследствие маловероятности возникновения необходимости в таком сопоставлении.

Знание уравнений эквивалентности позволяет без труда переходить от одного измерения доходности к другому. Например, доходность облигаций по простой процентной ставке составила за полгода 60 %. По формуле (2.2.21) найдем, что в пересчете на сложные проценты это составляет 69 %. Доходность векселя, дисконтированного по простой учетной ставке 50 % за 3 месяца до срока погашения, в пересчете на простую процентную ставку составит 57,14 % (2.2.34), если же по процентной ставке принята точная временная база (365 дней), то, применив формулу (2.2.36), получим i = 57,94 %).

Например, предприятие может столкнуться с необходимостью выбора между получением кредита на 5 месяцев под сложную номинальную ставку 24 % (начисление процентов поквартальное) и учетом в банке векселя на эту же сумму и с таким же сроком погашения. Небходимо определить простую учетную ставку, которая сделает учет векселя равновыгодной операцией по отношению к получению ссуды. По формуле (26) получим d = 22,21 %.

Кроме формул, приведенных в табл. 2.2.2 и 2.2.3, следует отметить еще одно полезное соотношение. Между силой роста и дисконтным множителем декурсивных процентов существунт следующая связь:

. (2.2.38)

Таблица 2.2.2

Эквивалентность простых ставок

Простая процентная ставка

(iпр)

Простая учетная ставка

(dпр)

Сложная процентная ставка (iсл)

(2.2.20)

(2.2.21)

(2.2.22)

(2.2.23)

Сложная

номинальная процентная ставка (j)

(2.2.24)

(2.2.25)

(2.2.26)

(2.2.27)

Сила роста (d)

(2.2.28)

(2.2.29)

(2.2.30)

(2.2.31)

Простая учетная

ставка (dпр)

n = t/K

(2.2.32)

(2.2.33)

Простая учетная ставка (dпр)

ki = kd = 360

(2.2.34)

(2.2.35)

Простая учетная ставка (dпр)

ki = 365

kd = 360

(2.2.36)

(2.2.37)

Перейти на страницу: 1 2 3 4 5 6 7