, (2.3.17)
где R – член ренты (разовый платеж); i – сложная процентная ставка.
Таблица 2.3.3
Основные формулы наращения и дисконтирования
ограниченных аннуитетов
Виды рент |
Наращение |
Дисконтирование |
Годовая с начислением несколько раз в году (p = 1, m > 1) |
(2.3.5) |
(2.3.11) |
p-срочная с начислением 1 раз в году (p > 1, m = 1) |
(2.3.6) |
(2.3.12) |
p-срочная с начислением несколько раз в году (p > 1, m > 1, p = m) |
(2.3.7) |
(2.3.13) |
p-срочная с начислением несколько раз в году (p > 1, m > 1, p ≠ m) |
(2.3.8) |
(2.3.14) |
Годовая с начислением непрерывных процентов (p = 1, d) |
(2.3.9) |
(2.3.15) |
p-срочная с начислением непрерывных процентов (p > 1, d) |
(2.3.10)
|
(2.3.16) |
Например, по условиям страхового договора компания обязуется выплачивать 5 тыс. руб. в год на протяжении неограниченного периода, т. е. вечно. Чему должна быть равна стоимость этого перпетуитета, если уровень процентной ставки составит 25 % годовых? Текущая стоимость всех предстоящих платежей по договору будет равна 20 тыс. руб. (5/0,25).
Если неограниченная рента выплачивается p раз в году и начисление процентов по ней производится m раз за год, причем m = p, то формула расчета ее приведенной стоимости принимает вид
, (2.3.18)
где j – номинальная процентная ставка.
Предположим, рассмотренный выше перпетуитет будет выплачиваться дважды в год по 2,5 тыс. руб., столько же раз будут начисляться проценты (25 % в этих условиях становится номинальной ставкой). Его стоимость останется неизменной 20 тыс. руб. ((2,5 + 2,5)/0,25).
В наиболее общем виде (m > 1, p > 1, m ≠ p) формула приведенной стоимости перпетуитета записывается следующим образом:
. (2.3.19)
В принципе, ее можно использовать во всех случаях, подставляя соответствующие значения параметров m, p, j, или i. Если предположить четырехразовое начисление процентов по рассматриваемому перпетуитету, то в соответствии с (19) его текущая стоимость составит: 19,394 тыс. руб. (5/(2((1 + 0,25/4)4/2 – 1))).
Интересно отметить связь, существующую между годовой вечной и годовой ограниченной рентами (аннуитетами). Преобразовав правую часть формулы (2.3.4), получим
. (2.3.20)
Таким образом, современная величина конечной ренты, имеющей срок n периодов, может быть представлена как разница между современными величинами двух вечных рент, выплаты по одной из которых начинаются с первого периода, а по второй – с периода (n+1).
В случае если член вечной ренты R ежегодно увеличивается с постоянным темпом прироста g, то приведенная стоимость такой ренты определяется по формуле
, (2.3.21)
где R1 – член ренты в первом году.
Данная формула имеет смысл при g < i. Она применяется в оценке обыкновенных акций.
При сравнении приведенной стоимости различных аннуитетов можно избежать громоздких вычислений, запомнив следующее правило: увеличение числа выплат по ренте в течение года (p) увеличивает ее текущую стоимость, увеличение числа начислений процентов (m), наоборот, уменьшает. При заданных значениях R, n, i (j, d) наиболее высокий результат даст дисконтирование p-срочной ренты с одним начислением процентов в год (m = 1). Самый низкий результат при этих же условиях будет получен по годовой ренте (p = 1) с непрерывным начислением процентов. По мере увеличения p современная величина ренты будет расти, по мере роста m она будет снижаться. Причем изменение p дает относительно больший результат, чем изменение m. То есть любая p-срочная рента даже с непрерывным начислением процентов (m → ∞) будет стоить дороже, чем годовая рента (p = 1) с одним начислением процентов в год (m = 1). Например, по облигации предусмотрена ежегодная выплата 1 тыс. руб. в течение 5 лет. Процентная ставка составляет 20 %. При начислении декурсивных процентов один раз в год стоимость этой ренты по базовой формуле (2.3.4) составит 2,99 тыс. руб. Если выплаты будут производиться два раза в год по 500 руб., то по формуле (2.3.12) стоимость ренты будет равна уже 3,13 тыс. руб. Но если по последнему варианту начислять проценты два раза в год (2.3.13), текущая величина ренты снизится до 3,07 тыс. руб. Если же двукратное начисление применить к исходному варианту при p = 1 (11), то приведенная стоимость ренты станет еще меньше – 2,93 тыс. руб. Самым дешевым будет вариант годовой ренты (p = 1) с непрерывным начислением процентов (2.3.15) – 2,86 тыс. руб.
Перейти на страницу:
1 2 3 4